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ABSTRACT

Present day computer systems are fragile and unreliable. Human beings are involved in the
care and repair of computer systems at every stage in their operation. This level of human
involvement will be impossible to maintain in future. Biological and social systems of
comparable and greater complexity have self-healing processes which are crucial to their
survival. It will be necessary to mimic such systems if our future computer systems are to
prosper in a complex and hostile environment. This paper describes strategies for future
research and summarizes concrete measures for the present, building upon existing software
systems.

Autonomous systems

We dance for our computers. Every error, every
problem that has to be diagnosed schedules us to do
work on the system’s behalf. Whether the root cause
of the errors is faulty programming or simply a lack of
foresight, human intervention is required in computing
systems with a regularity which borders on the embar-
rassing. Operating system design is about the sharing
of resources amongst a set of tasks; additional tasks
need to be devoted to protecting and maintaining a
computer with an immune system so that human inter-
vention can be minimized.

Imagine what the world would be like if humans
were as helpless as computer systems. Doctors would
be paged every time a person felt unwell or had to do
something as basic as purge their waste ‘files.’ They
would then have to summon the person concerned in
order to perform the necessary dialysis procedures and
push pills into their mouths manually. Fortunately
most humans have self-correcting systems which work
both proactively and retroactively to prevent such a
situation from arising. Not so computers: it is as
though all of our machines are permanently in hospi-
tal.

This paper is about the need for a new paradigm
leading to the construction of a bona fide computer
immune system. With an immune system, a computer
could detect problem conditions and mobilize
resources to deal with them automatically, letting the
machine do the work. Although the phrase ‘immune
system’ would make many people think immediately
of computer viruses, there is much more to the busi-
ness of keeping systems healthy than simply protect-
ing them from attack by hostile programs. If one
thinks of biological systems or other self-sufficient
systems, such as cities and communities, some of the
most critical subsystems are involved in cleaning up
waste products, repairing damage and security through
checking and redundancy. It would be unthinkable to
do without them.

Surprisingly most system administration models
which are developed and sold today are entirely based
either on the idea of interaction between administrator
and either user or machine; or on the cloning of exist-
ing systems. We see user graphical user interfaces of
increasing complexity, allowing us to see the state of
disarray with ever greater ulcer-provoking clarity, but
seldom do we find any noteworthy degree of auton-
omy. In other words administrators are being placed
more and more in the role of janitors or doctors with
pagers. We are giving humans more work, not less.

The aim here is to promote serious discussion
and research activity in the area of autonomic system
maintenance. System administration overlaps with so
many other areas of computing that it is generally for-
gotten as a side issue by the academic community. I
would like to argue that it is one of the most pressing
issues that we face. Dealing with the complexity of the
network is the main challenge of the next century.
Every multiprocess computer system is already a
micro-cosmic virtual network. Computer resources
have perhaps been too precious to make defensive or
preventative systems feasible before now (and we
have been distracted by other more glamorous issues),
but the time is right to build not merely fault tolerant
systems, but self-maintaining, fault-corrective sys-
tems. In the sections which follow I would like to
explore this idea and discuss how one might effi-
ciently build such systems.

Historical

The idea of self maintaining computer systems is
not new but, as with many modern technologies
(telecommunications, robotics), it originates in science
fiction rather than science fact. There are dozens of
examples of autonomous systems in speculative writ-
ings. The artificial intelligence community has been
developing analogous systems using techniques devel-
oped over the past thirty years; some of these have
even been used to create diagnostic systems for human
beings, but not computers.
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In 1974, science fiction writer John Brunner
wrote Shockwave Rider [1], building on Alvin Tof-
fler ’s Future shock. In his world of fax machines, laser
printers, laptops and mobile phones, where govern-
ments argue about the public freedom to encrypt data,
we find computer worms which propagate across the
equivalent of the Internet performing vital (and non-
vital) services quite autonomously. In this world, most
computing transactions occur by creating worms, or
intelligent agents which work in the background on
behalf of users. Such is the extent of these worms that
operating systems are necessarily programmed to give
them a low priority to avoid being swamped
(spammed). This is something which we experience
today. His solution is correct but too simplistic for a
real world system. A full immune system would need
to be less passive. It was, incidentally, only a few
years later in 1988 that the first Internet worm (propa-
gating infectious agent) was thrust to the forefront of
our attention [2]. Even earlier examples of
autonomous systems include Robbie the robot in For-
bidden Planet and HAL in the film 2001: A space
odyssey. HAL was a self diagnosing, but not self-
repairing system, but he was also guilty of mobilizing
human power and even sending them on wild goose
chases, to fix a problem which could almost certainly
have been dealt with automatically!

There are several valuable insights to be made by
comparing computing systems to biological and social
systems. Biological and social systems have solved
most of the problems of self-sufficiency with inge-
nious efficiency. Science fiction writers too have
expended many pages exploring the consequences of
speculative ideas. It is not merely for whimsical
amusement that such comparisons are valuable. All
ideas should be considered carefully, particularly
when they are based on millions of years of evolution
or a hundred years of reflection.

Mechanical robots manage removable storage
media even today. Robots which repair computer
hardware are experimented with in England, but soft-
ware robots – artificial agents which perform manual
labour at the system level – are almost non-existent.
One exception is cfengine [3, 4, 5, 6], a software robot
which can sense aspects of the state of the system and
alter its program accordingly. Cfengine can perform
rudimentary maintenance on files and processes, but it
is at the lower threshold of intelligence on the evolu-
tionary scale. A system like cfengine will be the hands
or manipulators of our future systems, but more com-
plex recognition systems are needed to select the best
course of action. Cfengine is not so much as robot as it
is a claw.

One of science-fiction’s common scenarios is
that machines will run amok and turn against human-
kind. In a sense, bug ridden software does just this
today, and system crackers write programs which cor-
rupt the behavior of the system so as to attack the user.
Isaac Asimov’s answer to this problem, developed in

detail in the 1940’s, was to endow automatons with a
set of rules which curbed their behavior and prevented
them from harming humans. In a sense this was a the-
oretical immune system.

1. A robot may not injure a human being, or
through inaction allow a human being to come
to harm.

2. A robot must obey the orders given to it by
human beings, except where such orders would
conflict with the First Law.

3. A robot must protect its own existence as long
as such protection does not conflict with the
First or Second Law.

These rules are more than nostalgia; there is a
serious side to building the analogue of Asimov’s laws
of robotics [7] into operating systems. If one replaces
the word robot with system and human with user, it
seems less fanciful. The practical difficulty is to trans-
late whimsical words into concrete detectable states.
This starts to sound like artificial intelligence, but a
less intensive solution might also be possible. In fact,
such basic rules already work as a loose umbrella for
the way in which systems work, but that looseness can
be tightened up and made into a formal protocol. As
Asimov discussed in the forties, the potential for
human abuse of systems which are required to follow
rigid programs is great. The system vandals of the
future will have new rule systems to exploit in their
pursuit of mischief. Our task is to make the rules and
protocols of the future as immune as possible to cor-
ruption. This is only possible if those rules present a
moving target, i.e., we aim for adaptive systems.

As a chemist, Asimov based his robots on ana-
logue computing technology with varying potentials,
not unlike the behavior of the body. In modern jargon
they were based on fuzzy logic. Digital systems aban-
doned analogue computing long ago, but there is still a
statistical truth in such analogue notions. Continuous
variables may yet replace the digital logic of our
canonical programming paradigms in a wide range of
applications, not as analogue electrical potentials but
as statistical or thermodynamical average potentials.
Quantities analogous to physical variables temperature
and entropy can be defined on the basis of the average
behavior of computer systems. Such variables act as
book keeping parameters and could be used to sim-
plify and make running sense of system logs, for
example. In his Foundation books, a statistical theory
of society called psycho-history was proposed. The
reality of this may be observed in the present day sta-
tistical mechanics of complex physical and biological
systems (including immunology) as well as in weather
forecasting. The statistical analysis of complex sys-
tems in the natural world is a science which is
presently being constructed from origins in statistical
physics. It will most likely converge with the work in
pattern recognition and neural computing. Computer
immunology needs to be there alongside its biological
counterpart.
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A lot of research work has been devoted to the
development of mechanical robots, in the areas of pat-
tern recognition and expert systems, but at the bottom
of all of these lies a computer system which makes
humans subservient to its failures.

Present Day Solutions

Present day computer systems are not designed
with any sophisticated notions of immunity in mind,
but most of them are flexible enough to admit the inte-
gration of new systems. How far could we go in con-
structing an immune system today, even as an after-
thought? Many proponents of automation have built
systems which solve specific problems. Can these sys-
tems be combined into a useful cooperative? The
LISA conferences have reported many ideas for
automating system administration [8, 9, 10, 11]. Most
of these have been ways of generating shell or perl
scripts. Some provide ways of cloning machines by
distributing files and binaries from a central reposi-
tory.

Cfengine on the other hand is a tool, written by
the author, which differs from previous systems in a
number of ways. Firstly it does not use linear, proce-
dural programming such as shell or perl, it is a much
higher level descriptive language. The second differ-
ence is that it has converging semantics, i.e., one
describes what a system should look like, and when
the system has been brought to that state, cfengine
becomes inert. A third point about cfengine is that its
decision making process is based on abstract classes
which allows for more powerful administration mod-
els than we have traditionally been used to. Finally it
offers protection against unfortunate repetition of tasks
and hanging processes in situations where several
administrators are working independently with little
opportunity to communicate [12]. Cfengine was
designed with computer immunity in mind.

In spite of the enormous creative effort spent
developing the above systems, few if any of them will
survive in their present form in the future. As indi-
cated by Evard in a presentation at LISA 1997 [13]
analyzing many case studies, what is need now is a
greater level of abstraction. Although its details are
not yet optimal, the idea behind cfengine is basically
sound and meets most of Evard’s requirements, but
even this will not survive in present form. It is built as
a patch for our present operating systems. Ideally such
a system would be built into the core of a modern
operating system. The present Unix model is in need
of an overhaul: even a small one would help signifi-
cantly.

Corrective systems are not the only way in which
one can improve present day computers. Network ser-
vices are a mixture of uncoordinated mechanisms,
using inetd or listen to start heavyweight pro-
cesses, or based on permanently listening daemons.
An interesting model which could replace these tools

is the ACE system [14]. ACE (the Adaptive Commu-
nication Environment) is an extensive base of C++
classes which provide the necessary paradigms for
network services in neatly packaged objects. ACE can
use lightweight processes (threads) or heavyweight
processes, and can load classes on the fly in order to
optimize the servicing of network protocols. ACE is
well structured and carefully crafted, even though it
attempts to straddle and conceal the differences
between diverse Unix systems and NT. This kind of
modular approach could be used to strengthen network
reliability and security.

Many projects now under development, could
help to improve the state of off-the-shelf operating
systems. It will be up to system designers to adopt
these as standards. The challenge is to compress a pro-
tective scheme into low overhead threads which will
not noticeably affect system performance during peak
usage. The intervention of a human should be as far as
possible avoided.

Management Tools

The main focus in system administration today is
in the development of man-machine interfaces for sys-
tem management.

Tivoli [15] is a Local Area Network (LAN) man-
agement tool based on CORBA and X/Open stan-
dards; it is a commercial product, advertised as a com-
plete management system to aid in both the logistics
of network management and an array of configuration
issues. As with most commercial system administra-
tion tools, it addressed the problems of system admin-
istration from the viewpoint of the business commu-
nity, rather than the engineering or scientific commu-
nity. It encourages the use of IBM’s range of products
and systems, and addresses other widely used systems
through its use of open standards. Tivoli’s most impor-
tant feature in the present perspective is that it admits
bidirectional communication between the various ele-
ments of a management system. In other words, feed-
back methods could be developed using this system.
The apparent drawback of the system is its focus on
application level software rather than core system
integrity. Also it lacks abstraction methods for coping
with with real world variation in system setup.

HP OpenView [16] is a commercial product
based on SNMP network control protocols. OpenView
aims to provide a common configuration management
system for printers, network devices, Windows and
HPUX systems. From a central location, configuration
data may be sent over the local area network using the
SNMP protocol The advantage of OpenView is a con-
sistent approach to the management of network ser-
vices; its principal disadvantage, in the opinion of the
author, is that the use of network communication
opens the system to possible attack from hacker activ-
ity. Moreover, the communication is only used to alert
a central administrator about perceived problems. No
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automatic repair is performed and thus the human
administrator is simply overworked by the system.

Sun’s Solstice [17] system is a series of shell
scripts with a graphical user interface which assists the
administrator of a centralized LAN, consisting of
Solaris machines, to initially configure the sharing of
printers, disks and other network resources. The sys-
tem is basically old in concept, but it is moving
towards the ideas in HP OpenView.

Host Factory [18] is a third party software sys-
tem, using a database combined with a revision con-
trol system [19] which keeps master versions of files
for the purpose of distribution across a LAN. Host
Factory attempts to keep track of changes in individ-
ual systems using a method of revision control. A typ-
ical Unix system might consist of thousands of files
comprising software and data. All of the files (except
for user data) are registered in a database and given a
version number. If a host deviates from its registered
version, then replacement files can be copied from the
database. This behavior hints at the idea of an immune
system, but the heavy handed replacement of files
with preconditioned images lacks the subtlety required
to be flexible and effective in real networks. The blan-
ket copying of files from a master source can often be
a dangerous procedure. Host Factory could conceiv-
ably be combined with Cfengine in order to simplify a
number of the practical tasks associated with system
configuration and introduce more subtlety into the
way changes are made (it is not always necessary to
replace an arm in order to remove a wart). Currently
Host Factory uses shell and Perl scripts to customize
master files where they cannot be used as direct
images. Although this limited amount of customiza-
tion is possible, Host Factory remains essentially an
elaborate cloning system.

In recent years, the GNU/Linux community has
been engaged in an effort to make Linux (indeed
Unix) more user-friendly by developing any number
of graphical user interfaces for the system administra-
tor and user alike. These tools offer no particular
innovation other than the novelty of a more attractive
work environment. Most of the tools are aimed at con-
figuring a single stand-alone host, perhaps attached to
a network. Recently, two projects have been initiated
to tackle clusters of Linux workstations [20, 21].

While all of the above tools fulfill a particular
niche in the system administration market, they are
basically primitive one-off configuration tools, which
lack continuous monitoring of the configuration. It
would be interesting to see how each of these systems
handled the intervention of an inexperienced system
administrator who, in ignorance of the costly software
license, meddled with the system configuration by
hand. Would the sudden deviation from the system
model lead to incorrect assumptions on the part of the
management systems? Would the intervention destroy
the ability of the systems to repair the condition, or

would they simply fail to notice the error? In most
cases, it is likely that all three would be the result. The
lack of continuous assessment is a significant weak-
ness.

Monitoring Tools
Monitoring tools have been in proliferation for a

number of years [22, 23]. They usually work by hav-
ing a daemon collect some basic auditing information,
setting a limit on a given parameter and raising an
alarm if the value exceeds acceptable parameters.
Alarms might be sent by mail, they might be routed to
a GUI display or they may even be routed to a system
admin’s pager [23].

The network monitoring school has done a sub-
stantial amount of work in perfecting techniques for
the capture and decoding of network protocols. Pro-
grams such as etherfind, snoop, tcpdump and
Bro [24] as well as commercial solutions such as Net-
work Flight Recorder [25] place computers in
‘promiscuous mode’ allowing them to follow the pass-
ing data-stream closely. The thrust of the effort here
has been in collecting data, rather than analyzing them
in any depth. The monitoring school advocates stor-
ing the huge amounts of data on removable media
such as CD to be examined by humans at a later date
if attacks should be uncovered. The analysis of data is
not a task for humans however. The level of detail is
more than any human can digest and the rate of its
production and the attention span and continuity
required are inhuman. Rather we should be looking at
ways in which machine analysis and pattern detection
could be employed to perform this analysis – and not
merely after the fact. In the future adaptive neural nets
and semantic detection will be used to analyze these
logs in real time, avoiding the need to even store the
data.

An immune system needs to be cognizant of its
local host’s current situation and of its recent history;
it must be an expert in intrusion detection. Unfortu-
nately there is currently no way of capturing the
details of every action performed by the local host, in
a manner analogous to promiscuous network monitor-
ing. The best one can do currently is to watch system
logs for conspicuous error messages. Programs like
SWATCH [23] perform this task. Another approach
which we have been experimenting with at Oslo col-
lege is the analysis of system logs at a statistical level.
Rather than looking for individual occurrences of log
message, one looks for patterns of logging behavior.
The idea is that, logging behavior reflects (albeit
imperfectly) the state of the host [26].

Fault Tolerance and Redundancy
Fault tolerance, or the ability of systems to cope

with and recover from errors automatically, plays a
special role in mission critical systems and large
installations, but it is not a common feature of desktop
machines. Unix is not intrinsically tolerant, nor is NT,
though tools like cfengine go some way to making
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them so. In order to be fault tolerant a system must
catch exceptions or perform preliminary work to avoid
fault occurrence completely. Ultimately real fault tol-
erance must be orchestrated as a design feature: no
operation must be so dependent on a particular event
that the system will fail if it does not occur as
expected.

CFENGINE

Disks

Processes

SWATCH/BRO

Figure 1: Cfengine communicates with its environment in order to stabilize the system. This communication is es-
sential to cfengine’s philosophy of converging behavior. Once the system is in the desired state, cfengine be-
comes quiescent.

One of the reasons why large social and biologi-
cal systems are immune to failure is that they possess
an inbuilt parallelism or redundancy. If we scrape
away a few skin cells, there are more to back up the
missing cells. If we lose a kidney, there is always
another one. If a bus breaks down in a city, another
will come to take its place: the flow of public transport
continues. The crucial cells in our bodies die at a
frightening rate, but we continue to live and function
as others take over. component is very important.

Fault tolerance can be found in a few distributed
system components [27]: in file-systems like AFS and
DFS [28]. Disk replication and caching assures that a
backup will always be available. RAID strategies also
provide valuable protection for secondary storage
[29]. At the process level one has concepts such as
multi-threading and load balancing. Experimental
operating systems such as Plan 9 [30] and Amoeba
[31, 32] are designed to be resistant to the perfor-
mance of a single host by distributing processes trans-
parently between many cooperating hosts in a seam-
less fashion. Fault tolerance in Arjuna [33] and Corba
[34] is secured in a similar way.

Ideally however we do not want fault tolerant
systems but systems which can correct faults once

they have occurred. Faults are inevitable: they are
something to be embraced, not swept under the rug.
Some work has been done in this area in order to
develop software reliability checks [35], but the relia-
bility of an entire operating system relies not only on
individual software quality but also on the evolution
and the present condition of the system in its entirety.
It is impossible to deal with every problem in advance.
Presently computer systems are designed and built in
captivity and then thrown, ill-prepared, into the wild.

Feedback Mechanisms: cfengine
Cfengine [3, 4, 36] fulfills two roles in the

scheme of automation. On the one hand it is an imme-
diate tool for building expert systems to deal with
large scale configuration, steered and controlled by
humans. It simplifies a very immediate problem,
namely how to fix the configuration of large numbers
of systems on a heterogeneous network with an arbi-
trary amount of variety in the configuration. On the
other hand, cfengine is also a significant component in
the proposed immunity scheme. It is a phagocyte
which can perform garbage collection; it is a drone
which can repair damage and build systematic struc-
tures.

A reactor, or event loop, is a system which
detects a certain condition or signal and activates a
response. Reactor technology has penetrated nearly all
of the major systems on which our networks are
based. It is at the center of the client-server model, and
windowing technology. It is a method of making deci-
sions in a dynamical and structured fashion. Reactors
must play a central role in computer immunity.
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Several systems are already based on this idea.
Cfengine is a reactor which works by examining the
state of a distributed computer network and switching
on predefined responses, designed to correct specific
problems. SWATCH [23] is a reactor which looks for
certain messages in system log files. On finding par-
ticular messages it will notify a human much more
visibly and directly than the original log message. In
this respect SWATCH is a filter/amplifier or signal
cleaning tool. See Figure 1.

Reactors lead naturally to another idea: that of
back-reaction, or feedback [37]. If one system can
respond to a change in another, then the first system
should be able to re-adapt to the changes brought
about by the second system, forming a loop. For
instance, cfengine can examine the state of a Unix sys-
tem and run corrective algorithms. Now suppose that
cfengine logs the changes it makes to the system so
that the final state is known. These changes could then
be re-analyzed in order to alter cfengine’s program the
next time around. In fact, anticipating the need for
cooperative behavior, cfengine already has the neces-
sary mechanisms to respond to analyses of the system:
if its internals are insufficient, plug-in modules can be
used to extend its capabilities. This interaction with
modules allows cfengine to communicate with third
party systems and act back on itself, adapting its pro-
gram dynamically in response to changes in its per-
ceived classification of the environment. This is essen-
tial to cfengine’s converging semantics.

At the network level, the same idea could be
applied to dynamical packet filtering or rejection. Net-
work analyses based on protocols can be used to
detect problem conditions and respond by changing
access control lists or spam filters accordingly. The
mechanisms for this are not so easily implemented
today since much filtering takes place in routers which
have no significant operating system, but adaptive
firewalls are certainly a possibility.

Security
Security is a thorny issue. Security is about per-

ceived threats: it is subjective and needs to be related
to a security policy. This sets it on a pedestal in a gen-
eral discussion on system health, so I do not want to
discuss it here. Nevertheless, a healthy system is
inherently more secure by any definition and security
can, in principle, be dealt with in a similar manner to
that discussed here [38, 39]. Since network security is
very much discussed at present [40, 39, 41, 42, 43,
44], I focus only on the equally important but much
more neglected issue of stability.

Biological and Social Immunity

The body’s immune system deals with threats to
the operation of the body using a number of pro-active
and reactive systems. We can draw important lessons
and inspiration from the annals of evolution. There are
three distinct processes in the body: those which fight

infection, those which purge waste products and those
which repair damaged tissues.

Prevention
The first line of defense against infectious dis-

ease in the body is the skin. The skin is a protective
fatty layer in which most bacteria and viruses cannot
survive. The skin is the body’s firewall or viral gate-
keeper, and with that we need not say more. The stom-
ach and gut are also well protected by acid. Only one
in ten million infectious proteins entering the body
orally actually penetrate into the interior, most are
blocked or broken down in the gut.

Another mechanism which prevents us from poi-
soning ourselves is the cleansing of waste products
and unwanted substances from the blood. Natural
killer cells, phagocytes and vital organs cooperate to
do this job. If the blood were not cleansed regularly of
unwanted garbage, it would soon be so full of cells
that we would suffocate and our veins and arteries
would clog up. In a similar way we can compare the
performance of a system with and without a tool, like
cfengine, to carry out essential garbage collection. In
social systems, buildings or walls keep incompatible
players apart. In computing systems one has object
classes and segmentation to perform the same func-
tion. Ultimately computer systems need to learn to dis-
tinguish illness from health, or good from bad. If such
criteria can be defined in terms of computable states
and policies, then illness prevention can be automated
and an immune system can be built.

Infection or Attack
When the body is infected or threatened, it mobi-

lizes cells called lymphocytes (or B and T cells) to
deal with the threat. ‘Antigens’, (antibody-generating
threats) are often thought of as entities which are for-
eign to the body, but this is not necessarily the case.
Complex systems are quite capable of poisoning them-
selves.

Normally cells in the body die by mechanisms
which fall under a category known as programmed
cell death (apoptosis). In this case, the cells remain
intact but eventually cease to function and shrivel up
(analogous to death signalled by the child-done signal
SIGCHLD). Cells attacked by an infection die explo-
sively, releasing their contents (analogous to a seg-
mentation fault signal SIGSEGV), including proteins
into the ambient environment. This is called necrosis.
In one compelling theory of immunology, this unnatu-
ral death releases proteins into the environment which
signal a crisis and activate an immune response. This
provides us with an obvious analogy to work with.

The immune system comprises a battery of cells
in almost every bodily tissue which have evolved to
respond to violent cell death, both fighting the agents
of their destruction and cleaning up the casualties of
war: B-cells, T-cells, macrophages and dendritic cells
to name but a few. Antigens are cut up and presented
to T cells. This activates the T cells, priming them to
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attack any antigens which they bump into. B-cells
secrete antibody molecules in a soluble form. Anti-
bodies are one of the major protective classes of
molecules in our bodies. Somehow the immune sys-
tem must be able to identify cells and molecules which
threaten the system and distinguish them from those
which are the system. An important feature of biologi-
cal lymphocytes is the existence of receptor molecules
on their surfaces. This allows them to recognize cellu-
lar objects. Recognition of antigen is based on the
complementarity of molecular shapes, like a lock and
key.

The canonical theory of the immune system is
that lymphocytes discriminate between self and non-
self [45, 46, 47, 48, [49] (part of the system or not part
of the system). This theory suffers from a number of
problems to do with how such a distinction can be
made. Foreign elements enter our bodies all the time
without provoking immune responses, for instance
during eating and sex. The body has its own antigens
to which the immune system does not respond. This
leads one to believe that self/non-self discrimination
as a human concept can only be a descriptive approxi-
mation at best; from a computer viewpoint it would
certainly be a difficult criterion to program algorithmi-
cally. Recent work on the so-called danger model [50]
proposes that detector cells notice the shrapnel of non-
programmed cell death and set countermeasures in
motion. A dendritic cell attached to a body cell might
become activated if the cell to which it is attached
dies; the nature of the signalling is not fully under-
stood. Although controversial, this theory makes con-
siderable sense algorithmically and suggests a useful
model for computer immunity: signals are something
we know how to do.

The immune system recognizes something on the
order of 107 different types of infectious protein at any
given time, although T-cells have the propensity to
detect a repertoire of 1016 and B-cells 1011 [51]. Apart
from being a remarkable number to contemplate, the
way nature accomplishes this provides some ingenious
clues as to how an artificial immune system might
work. The immune response is not 100 percent effi-
cient: it does not recognize every antigen with com-
plete certainty. In fact it is only something on the order
of 10-5 or 0.001 percent efficient. What makes it work
so effectively, in the face of this inefficiency, is the
large number of cells in circulation (on the order of
1012 lymphocytes). There is redundancy or parallelism
in the detection mechanism. Since the cells patrolling
the body for invaders rely on spot checks, it is neces-
sary to compensate for the contingency of failure by
making more checks. In other words, the body does
not set up roadblocks which check every cell’s creden-
tials: it relies on frequent random checks to detect
threats. Indeed, there would not be room in the body
for a fighting force of cells to match every contin-
gency so new armies must be cloned once an infection
has been recognized. The dead or marked cells are

consumed by the body’s garbage collection mecha-
nism: macrophages ‘eat’ any object marked with an
antibody. Phagocytes are the cells which engulf dead
cells and remove them from the system.

Originally it was believed [52] the body was able
to manufacture antibody only after having seen invad-
ing antigens in the body. However later it was shown
[53, 54] that the body can make antibody for an anti-
gen which has never existed in the history of the
world. Having a repertoire with predetermined (ran-
dom) shapes, the body uses a method of Darwinian
(clonal) selection. Cells which are recognized prolifer-
ate at the expense of the rest of the population. The
computer analogy would be to create a list of all possi-
ble checks and to change the priority of the checks in
response to registered attacks. Seldom used attacks
migrate down the list as others rise to the forefront of
attention. This is also closely related to neural behav-
ior and suggests that neural computing methods would
be well suited to the task. Learning in a neural net is
accomplished by random selection provided there is a
criterion of value which selects one neural pathway
over another when the correct random pathway is
selected. In the case of a learning baby making ran-
dom movements to grasp objects, the (presumably
genetically inherited) criterion is the ‘pleasure of suc-
cess’ in targeting the objects. In building a system of
automatic immunity based on cheaply computed prin-
ciples, it the basic criteria for good and evil, or healthy
and sick which must be determined first.

The message is this: autonomous systems do not
have to be expensive provided the system holds down
the number of challenges it has to meet to an accept-
able level. In the body, the immune system does not
maintain a huge military presence in the body at all
times. Rather it has a few spies which are present to
make spot checks for infection. The body clones
armies as and when it needs them. Inflammation of
damaged areas signals increased blood flow and activ-
ity and ensures a rapid transport of cloned killer cells
to the affected area as well as a removal of waste
products. In a similar way, computers could alter their
level of immune activity if the system appeared abnor-
mal. Balance through feedback is important though:
cancer is one step away from cloning.

Biological protocols
Protocols, or standards of behavior, are the basic

mechanism by which orderliness and communication
are maintained in complex systems. In the body a vari-
ety of protocols drive the immune system. The
immune system encounters intruders via a battery of
elements: antibody markers, T-cell presenting cells,
the Peyers patches in the gut and so on [55]. In social
systems one has rules of behavior, such as: put out the
garbage on Tuesdays and Fridays; put money in the
parking meter to avoid having your car swallowed by
some uniformed phagocyte and so on.
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Presently the main protocol for dealing with fail-
ure in the computing world is the 2001 syndrome [56]:
wait for the system to collapse and then fix it. Com-
plete collapse followed by reboot. No other organiza-
tion or system in the world functions with such a sin-
gular disregard for its own welfare and the welfare of
its dependents (the users). If a light bulb burns out and
we replace it, there is no significant loss to its depen-
dents. If a computer crashes users can lose valuable
data, not merely time. Protocol solutions need to be
built into the fabric of operating systems.

Computer Immunity and Repair

Computer Lymphocytes
What can we adapt from biological systems in

order to build not merely fault tolerant systems, but
fault correcting systems? Are the mechanisms of natu-
ral selection and defensive counter attack useful in
computer systems?

The main difference between a computer system
and the body is that the numbers are so much smaller
in a computer system that the discrete nature of the
system is important. Pattern recognition is a useful
concept, but how should it be applied? The recogni-
tion of patterns in program code could be applied to
individual binaries and might be used to detect poten-
tially harmful operations, such as programs which try
to execute ‘‘rm -rf *’’ or which attempt to conceal
themselves using standard tricks. In order to select
programs-to-allow and programs-to-reject one must
search for code strings which can lead to dangerous
behavior.

Self/non-self is not a very useful paradigm in
computing and some immunologists believe that it is
also an erroneous concept in biology. It is clearly
irrelevant where a program originates; indeed we are
actively interested in obtaining software from around
the world. Such transplants or implants are the sub-
stance of the Internet. Rather, we could use a danger
model [50] to try to detect programs which exhibit
dangerous behavior as they run. The danger model in
biology purports that the immune system responds to
chemical signals which are leaked into the environ-
ment through the destruction of attacked cells. In
other words, it is things which cause damage which
activate an immune response. Here we shall define a
danger model to be one in which an immune response
is based on the general detection of dangerous condi-
tions in the system. An immune system lies dormant
until a problem is detected and wakes up in response
to some signal of damage. This is the opposite of the
way a firewall works, or preventative philosophies
such as the security model the Java virtual machine
[57]. In an immune system one already admits the
defeat of prevention.

Today, the necessary danger signals might be
found in the logs of programs running in user mode, or
from the kernel exec itself. Ideally programs would

not just log alerts to syslog, they would be able to acti-
vate a response agent (a lymphocyte) to fight the
infection, i.e., the logging mechanism would be a
reactor like inetd or listen, not just a dumb receptor
[23].

A more efficient danger model for the future
could be constructed by introducing a new standard-
ized signalling mechanism. If each system process had
a common standard of signalling its perceived state (in
addition to, and different from, the existing signals.h)
this could be used to calculate a vector describing the
collective state of the system. This could, in turn, be
used to create advanced feedback systems, discussed
in the fourth section. To diagnose the correct immune
response, programs need to be able to signal their per-
ceived state to the outside world. Normally this is only
done in the event of some catastrophe or on comple-
tion, but computer programs are proportionally more
valuable to a computer than cells are to the body and
we are interested in the effect each program has on the
totality of the system. A program is often in the best
position to know what and when something is going
wrong. Outside observers can only guess. In some
ways this is the function of system logs today, but the
information is not in a useful form because it is com-
pletely non-standard and cannot be acted upon by the
kernel or an immune system. To provide the simplest
picturesque example of this kind of signalling, con-
sider the characterization of running processes by the
basic ‘emotional’ states or the system weather:

• Happy/Sunny (Plenty of resources, medium
activity)

• Sad/Cloudy (Low on resources)
• Surprised/Unsettled (System is not in the state

we expect, attack in progress, danger?)
• Angry/Stormy (System is responding to an

attack)

Using such insider information, an immune
response could be switched on to counter system
stress. In order to be effective in practice, such states
need to be related to a specific resource, for example:
disk requirements, CPU requirements, the number of
requests waiting in event queues etc. This would allow
the system to modify its resource allocation policies,
or initiate countermeasures, in order to prevent dan-
gerous situations from developing. It is tempting to
think of processes which could quickly pin-point the
source of their troubles and obtain a response from the
immune system, but that is a difficult problem and it
might prove too computationally expensive in prac-
tice. Since the system kernel is responsible for
resource allocation, such a scheme would benefit from
a deep level of kernel cooperation. A graded signal
system would be a good measure of system state, but
it needs to be tied to resource usage in a specific way.
See also reference [29].

Assuming that such a signalling model were
implemented, how would counter-measures be initi-
ated? In the body there are specific immune responses
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and non-specific immune responses. If we think in
terms of what an existing cfengine based immune sys-
tem could do to counter stressed systems there are two
strategies: we could blindly start cfengine with its
entire repertoire of tests and medicines to see if thrash-
ing in the dark helps, or we could try to detect and
activate only particular classes within a generic
cfengine program to provide a specific response.
These are also essentially the choices offered by biol-
ogy.

The detection of dangerous programs by the
effect they have on system resources is a ‘danger
model.’ A self-non-self model based purely on recog-
nition requires the identification and verification of
program entities. This would be computationally inef-
ficient. New in-coming programs would have to be
analyzed with detection algorithms. Once verified a
program could be marked with an encryption key sig-
nature for its authenticity to prevent the immune sys-
tem from repeating its lengthy analysis. Or conversely,
dangerous programs could be labelled with ‘antibody’
to prevent them from being used. Cfengine recognizes
this kind of philosophy with its ‘disable’ strategy of
rendering programs non-executable, but it requires
them to be named in advance.

What is impressive about the biological immune
system is that it recognizes antigens which the body
has never even seen before. It does not have to know
about a threat in order to manufacture antibody to
counter it. Recognition works by jigsaw pattern-identi-
fication of cell surface molecules out of a generic
library of possibilities. A similar mechanism in a com-
puter would have to recognize the ‘shapes’ of
unhealthy code or behavior [58, 59]. If we think of
each situation as begin designated by strings of bytes,
then it might be necessary to identify patterns over
many hundreds of bytes in order to achieve identify a
threat. A scaled approach is more useful. Code can be
analyzed on the small scale of a few bytes in order to
find sequences of machine instructions (analogous to
dangerous DNA) which are recognizable program-
ming blunders or methods of attack. One could also
analyze on the larger scale of linker connectivity or
procedural entities in order to find out the topology of
a program.

To see why a single scale of patterns is not prac-
tical we can gauge an order of magnitude estimate as
follows [51]. Suppose the sum of all dangerous pat-
terns of code is S bytes and that all the patterns have
the same average size. Next suppose that a single
defensive spot-check has the ability to recognize a
subset of the patterns in some fuzzy region ∆S, i.e., a
given agent recognizes more than one pattern, but
some more strongly than others and each with a cer-
tain probability. Assume the agents are made to rec-
ognize random shapes (epitopes) that are dangerous,
then a large number of such recognition agents will
completely cover the possible patterns. The worst case

is that in which the patterns are randomly occurring (a
Poisson distribution). This is the case in biology since
molecular complexes cannot process complex algo-
rithms, they can only identify affinities. With this sce-
nario, a single receptor or identifier would have a

probability of
∆S

S
of making an identification, and

there would be a probability 1 −
∆S

S
of not making an

identification, so that a dangerous item could slip
through the defenses. If we have a large number n of
such pattern-detectors then the probability that we fail
to make an identification can be simply written,

Pn = (1 −
∆S

S
)n ≈ e

−n
∆S

S .

Suppose we would like 50% of threats to be
identified with n pattern fragments, then we require

−n
∆S

S
≈ −ln Pn ≈ 0. 7.

Suppose that the totality of patterns is of the order of
thousands of average sized identifier patterns, then
∆S

S
≈ 0. 001 and n ≈ 7000. This means that we

would need several thousand tests per suspicious
object in order to obtain a fifty percent chance of iden-
tifying it as malignant. Obviously this is a very large
number, and it is derived using a standard argument
for biological immune systems [51], but the estimate
is too simplistic. Testing code at random places in ran-
dom ways is hardly efficient, and while it might work
with huge numbers in a three dimensional environ-
ment in the body, it is not likely to be a useful idea in
the one-dimensional world of computer memory.
Computers cannot play the numbers game with the
same odds as biological systems. Even the smallest
functioning immune system (in young tadpoles) con-
sists of 106 lymphocytes, which is several orders of
magnitude greater than any computer system.

What one lacks in numbers must therefore be
made up in specificity or intelligence. The search
problem is made more efficient by making identifica-
tions at many scales. Indeed, even in the body, pro-
teins are complicated folded structures with a hierar-
chy of folds which exhibit a structure at several differ-
ent scales. These make a lock and key fit with recep-
tors which amount to keys with sub-keys and sub-sub-
keys and so on. By breaking up a program structurally
over the scale of procedure calls, loops and high level
statements one stands a much greater chance of find-
ing a pattern combination which signals danger. Opti-
mally, one should have a compiler standard to facili-
tate this. The executable format of a program might
reveal weaknesses. Programs which do stack long-
jumping or use functions gets() and scanf() are danger-
ous, they suggest buffer overflows and so forth. It is
possible that systems could enforce obligatory seg-
mentation management on such programs, with library
hooks such as Electric Fence [60]. Unfortunately such
hooks incur large performance overheads, but this
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could also be optimized if operating systems provided
direct support for this.

Permanent programs should be screened for dan-
gerous behavior once and for all, while more transi-
tory user programs could be randomly tested. In this
way we effectively distinguish between self and non-
self, by adoption, for the sake of efficiency. There is
no reason to go on testing system programs provided
there is adequate security. In periods of low activity,
the system would use its inactivity to make spot
checks. The most adaptable strategy would be to leave
a hook in each application or service (sendmail, ftp,
cfengine) which would allow a subroutine antibody to
attach itself to the program, testing the system state
during the course of the program’s execution. Prob-
lems would then be communicated back to the system.

Another possibility is that programs would have
to obey certain structural protocols which guaranteed
their safety. Graham et al have introduced the notion
of adaptable binary programs [61]. This is a data for-
mat for compiled programs which allows adaptable
relocation of code and analysis of binary performance
without re-compilation. The ability to measure infor-
mation about the performance and behavior of exe-
cutable binaries has exciting possibilities for security
and stability, but it also opens programs to a whole
new series of viral attacks which might hook them-
selves into the file protocol.

The biological danger model also suggests mech-
anisms here. It purports that a cell which dies badly
signals danger. The analogue in program execution is
that programs which do not end with a SIGCHILD
(normal programmed death) but with SIGABRT, SIG-
BUS or SIGSEGV etc are dangerous; see Figure 2. If
the system kernel could collect statistics about pro-
grams which died badly, it would be possible to warn
about the need to secure a replacement (transplant) for
a key program or to restart essential services, or even
to purge the program altogether.

Signal Cause
SIGINT Interrupt/break or CTRL-C
SIGTERM Terminate signal
SIGKILL Instant death
SIGSEGV Segmentation (memory) violation
SIGBUS Bus error/hardware fault
SIGABRT Abnormal termination
SIGILL Illegal instruction
SIGIOT Hardware fault
SIGTRAP Hardware fault
SIGEMT Hardware fault
SIGCHLD Child process exiting (apoptosis)

Figure 2: Some common signals from signals.h .

In the long run, it will be necessary to collect
more long term information about the system. Biologi-
cal systems do this by Darwinism, by playing the

game of huge numbers. Computers will have to be
more refined than this.

More Feedback Systems and Reactors
Feedback in system administrations leads to

some ipowerfuldeas. Computer systems driven by
economic principles can provide us with a model of
coping with excess load. The Market Net project [62]
is developing technologies based on the notions of a
market economy. This includes protocols and algo-
rithms which adapt to changing resource availability.
Resources, including CPU time, storage, sensors and
I/O bandwidth, can be traded. When resources become
scarce, prices rise (i.e., priorities wane) encouraging
clients to adapt their resource usage. Such a system
could come under attack through fraud. A consumer of
services could make deceive the resource disseminator
in an attempt to divert the system’s wealth. Mecha-
nisms must be in place to recognize this kind of fraud
and respond to it to prevent exploitation of the sys-
tems. The kernel, as resource manager, needs to be
aware of how many clones of a particular process or
thread are active, for instance, and be able to restrict
the numbers so as to preserve the integrity of the sys-
tem. Fixed limits might be appropriate in some cases,
but clearly the performance of the system could be
optimized in some sense using a feedback mechanism
to regulate activity. Biological and social systems
adapt in just this way and a computer immune system
should be able to adapt using a mechanism of this
type.

The economy model holds some obvious truth,
but the analogy is not quite the right one. It misses an
important point: namely that operating system survival
depends not only on the fair allocation of resources,
but also on the ability to collect and clean up its waste
products: the fight against entropy. Natural selection
(evolution) is the mechanism which extends market
philosophy to the real world. It includes not just
resource sharing but also the ability to mobilize anti-
bodies and macrophages which can actively redress
imbalances in system operation.

From a physicists perspective a computer is an
open system: a non-equilibrium statistical system. One
can expect to learn from the field of statistical physics
[63], field theory [64] and neural networks [65] as can
biological studies.

Protocols
Protocol solutions are common in operating sys-

tems for a wide range of communication scenarios:
there is security in formality. Protocols make the busi-
ness of verifying general transactions easy. When it
comes down to it, most operations can be thought of
as transactions and formalized by procedural rules.
The advantage of a protocol is the additional control it
offers; the disadvantage is the overhead it entails. It is
not difficult to dream up protocols which provide
assurances that system integrity is not sacrificed by
individual operations. Protocol solutions for system
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well-being could likely solve problem, in principle,
but the cost in terms of overhead would not be accept-
able. A balance must be stricken whereby basic
(atomic) system transactions are secured by efficient
protocols and are supplemented by checks after the
fact. Still, as computing power increases, it becomes
viable (and for some desirable) to increase the level of
checking during the transactions themselves. Let us
mention a few areas where protocol solutions could
assist computer immunity.

i) Process dispatch, services and the acceptance
of executable binaries from outside. Programs could
be examined, analyzed and verified before being
accepted by the system for execution, as with the Java
Virtual Machine. Hostile programs could be marked
hostile with ‘antibodies’ and held inert, while safe pro-
grams could be marked safe with a public key. Spot
checks on existing safe programs could be made to
verify their integrity, perhaps using checksums, such
as md5 checksums. ii) Object inheritance with histo-
ries: program X can only be started by a named list of
other programs. This is like TCP wrappers/rsmsh but
within the confines of each host. A linking format
allows us to place hooks in a program to which the OS
can attach test programs, a bit like a debugger. In this
way, one could perform spot checks at run time from
within. This also opens a new vulnerability to attack,
unless one restricts hooks to the system. iii) License
server technology is an example of software which
will only run on a given host. Could one prevent peo-
ple from sending native code programs to remote sys-
tems in this way? The Internet worm only propagated
between systems with binary compatibility. iv) Can
we detect when a program will do harm? One could
audit system calls made by the program before run-
ning it in privileged mode. Detecting buffer overflows
is one of the most important problems in present day
computing. Electric fence etc. Of course this kind of
computer system bureaucracy will slow down sys-
tems. v) Spamming could be handled by equipping
reactors with a certain dead time, as one finds in neu-
ronic activity. Adaptive locks [37] solve this problem.
They could be used to limit the availability of critical
and non-critical services in different ways. For exam-
ple, after each ping transaction, the system would not
respond to another ping transaction for a period of t
seconds.

Each of these measures makes our instantaneous
computer systems closer to sluggish biological sys-
tems, so it is important to choose carefully which ser-
vices should be limited in this way.

Learning Systems
Seemingly inert molecular systems have a mem-

ory of previously fought infectious agents. This is not
memory in the sense of computers but a memory in
the Darwinian sense formed by the continual reap-
praisal of the system’s sense of priorities. Computers
cannot work in this way: the number of players in

computer systems is many orders of magnitude too
small. What they can do however is to learn from past
experience.

Time series prediction is a way of predicting
future behavior based on past experience. Watching
logs and process signals, we can build up a pattern of
activity and use it to sense difficulty. Time series
detection is well established in seismology, vulcanol-
ogy and astronomical observation. The only difference
here is that the data form a discrete alphabet of events
rather than continuous measurements. Patterns need to
be established: looking for regularly occurring prob-
lems such as lack of memory or swapping/paging
(thrashing) fits, which disks become full, as well as
process sequences which most often lead to difficulty.
Advanced state detection can recognize symptoms
before they develop into a problem. Fuzzy ‘logic’ and
behavioral pattern recognition are natural ways to
diagnose developing situations such as disk-full condi-
tions and attacks to the system. Pattern recognition
and neural networks will be useful for diagnosing
external attacks on the system as well as for diagnos-
ing cases where the system attacks itself.

Logging probes like Network Flight Recorder
and Bro [25, 24] can be used to collect the informa-
tion, but a proper machine analysis of the data is
required. System logs also need to be analyzed: can
we reduce complex log messages to strings of simple
characters [26] ? What is the alphabet of such mes-
sages? What is the scale of the signals? At the small
scale (lots of detail) we have network protocols. At the
large scale (averaged changes over long times) we
have statistical entropy and load patterns other mea-
sures.

Information, Time Series and Statistical Mechanics
A multitasking computer, even a stand-alone

computer, is a complex system; coupled to a network,
its level of complexity increases manifold. Although
scarcely reaching the level of biological or social com-
plexity, computer networks could provide us with an
ideal testing ground for many issues in those fields at
the same time as being worthy of study for purely
practical reasons. Complex systems have been ana-
lyzed in the context of physics and biology. The
methodology is well known to experts, if not com-
pletely understood. Future computer systems will ben-
efit from the methods for unravelling complexity as
the level of distribution and cooperation increases. In
many ways this harks back to Asimov’s psycho-his-
tory: the ability to predict social trends based on previ-
ous behavior.

Complexity in a computer system arises both
from the many processes which are running in the ker-
nel and from the distribution of data in storage. Sys-
tem activity is influenced by the behavior of users.
Users exert a random influence on the system leading
to fluctuating levels of demand and supply for
resources. Overlaid across this tapestry of fluctuating
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behavior we can also expect some strong regular sig-
nals. We expect to find a number of important regu-
larities: daily, hourly, and weekly patterns are to be
expected since these are the frequencies with which
the most common cron jobs are scheduled. They also
correspond to the key social patterns of work and
leisure amongst the users of the system. All students
rush to the terminal room at lunch time to surf the
web; all company employees run from the terminal
room at lunch time to sit in the sun. The daily signal
will perhaps be the strongest since most humans and
machines have a strong daily cycle.

Home grown periodic behavior is easily dealt
with: if we expect it, it does not need to be analyzed in
depth. However, other periodic signals might reflect
regular activity in the environment (the Internet for
instance) over which we have no control. They would
include everything from DNS domain transfers to pro-
grammed port scanning. They affect our own systems,
in perhaps subtle but nonetheless important ways
which reflect both the way in which network resources
are shared between uncooperating parties and the
habits of external users seeking their gratification from
our network services. Periodic patterns can be discov-
ered in a variety of ways: by Fourier analysis and by
search algorithms, for instance. A further possibility
which has important potential for the general problem
of behavior analysis is the use of neural networks.
Neural networks lead us into the general problem.

In a complex system, it is not practical to keep
track of every transaction which occurs, nor is it inter-
esting to do so. Many events which take place cause
no major changes in the system; there are processes
constantly taking place, but their effect on average is
merely to maintain the status quo. In physics one
would call this a dynamical equilibrium and random
incoherent events would be called noise. Noise is not
interesting, but a clear signal or change in the system
average behavior is interesting. We are interested in
following these major changes in computer systems
since they tell us the overall change in the behavior
with time; see Figure 3. On a stable system we would
not expect the average behavior of the system to
change very much. On an unstable system, we would
expect large changes.

Figure 3: Although the details of system behavior
seem random, the averages can reveal trends
which are simpler to deal with.

The implication in the preceding sentence is
based on the prejudice that significant change is a bad
thing. That point of view might be criticized. What

makes the gist of the argument correct is that it is
always possible to define a measured quantity in such
as way that this is true. A certain level of chaos might
be acceptable or even desirable, according to one defi-
nition of chaos, but unacceptable according to another.
In other words, the formulation of the problem is cen-
tral. The identification of the correct metrics is a sub-
ject for future research, probably more lengthy and
involved than one might think.

There is a close analogy here with the physics of
complex systems. At the simplest level the equilib-
rium state of a system and its average load has a ther-
modynamical analogy: namely in terms of quantities
analogous to temperature, pressure and entropy. If one
imagines defining a system’s average temperature and
pressure from the measured averages of system activ-
ity, then it is reasonable that these will follow a normal
thermodynamic development over long times. From a
physical point of view, a computer shares many fea-
tures in common with standard thermodynamical
models. The idea of using average parameters to char-
acterize the behavior is similar to what programs such
as xload or Sun’s perfmeter do. There are also
other ways [37] in which to record the local history of
the system. To put it flippantly we are interested in
computer weather forecasting. But there there is much
more to be gained from the computation of averages
than plotting line graphs to inform humans about the
recent past. The ability to identify trends and patterns
in behavior can allow a suitably trained autonomous
system to take measures to prevent dangerous situa-
tions from occurring before they become so serious
that it becomes necessary to fetch a ‘doctor.’ The rea-
son why single messages are insufficient is that com-
puter systems are clearly to a large extent at the mercy
of users’ behavior. If one understands local habits and
work patterns, then preventative action can be diag-
nosed and administered without having to rely on the
immediate availability of humans doctors and techni-
cians. Long term patterns cannot necessarily be under-
stood from singular log messages or threshold values
of system resources. There are too many factors
involved. One must instead grasp the social aspect of
system usage in an approximate way.

It is interesting to remark that, by averaging over
the discrete behavior of a complex system, one can
end up with continuously varying potentials; see Fig-
ure 4. Possibly computer networks will at some stage
of the future be reinterpreted as analogous electric cir-
cuits in which the potentials are not electricity but sta-
tistical events characterizing the flow of activity
throughout. Simple conservation arguments should be
enough to convince anyone that what one ends up with
is simply the physics of an abstract world forged by
the imprint of information flows. Much of this is
implicit in Shannon’s original work on information
theory [66]. It should be emphasized that the physics
of complex cooperative systems is one of the most dif-
ficult unsolved problems of our time so quick answers
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can easily be discounted. Nonetheless, there is cause
for optimism: often complexity is the result of simple
transactions and simple mechanisms. My guess is that,
to a useful level of approximation, the analysis of
computer systems will prove to be relatively straight-
forward, using the physics of today, just as biological
studies are benefitting from such theoretical ideas.

Build expert systems for configuration
Convergence cfengine Correlate system state and activity

using switches or ‘classes’ to activate responses.

Intrusion detection based on event occurrence.
Bro/N.F.R. simple analysis switches on classes in

Detection cfengine with predetermined rules to counter
intrusion attempts.

load average Process load average used to detect thresholds
which switch feed back class data to cfengine.
Cfengine restricts access to services, kills
offending processes etc.

Table 1: A makeshift immune system today. The key points this addresses are convergence and adaptive behavior.

0 1000 2000 3000 4000 5000

Figure 4: Disk usage as a function of time over the
course of a week, beginning with Saturday. The
lower solid line shows actual disk usage. The
middle line shows the calculated entropy of the
activity and the top line shows the entropy gradi-
ent. Since only relative magnitudes are of interest,
the vertical scale has been suppressed. The rela-
tively large spike at the start of the upper line is
due mainly to initial transient effects. These even
out as the number of measurements increases.

Summary: Putting the Pieces Together

All of the ideas noted in this paper have been
discussed previously in unrelated academic contexts.
The expertise required to build a computer immune
system exists in fragmented form. What is now
required is a measure of imagination and a consider-
able amount of experimentation in order to identify
useful mechanisms put together the pieces into a

working model. Fortunately there is no shortage of
ingenuity and willingness to participate in this kind of
experimentation in the system administration commu-
nity.

The best immune system one could build today
would be made up the elements such as those in Table
1.

With these tools, each host is as self-contained as
possible, accepting as little outside data as can be.
Sharing of Bro/Network Flight Recorder data should
be done carefully to avoid it being used as a means of
manipulating the system. In the absence of a better
running analysis, it is difficult to do better than this.
Even so, with carefully thought out rules, this provi-
sional approach can be very successful. Unfortu-
nately, finding the best rules is presently a time-con-
suming job for an experienced system administrator.
In time, perhaps we shall assemble a generic database
of rules for cfengine and related tools.

Hopefully a computer immune system will at
some time in the future become a standard. The last
thing we need is a multitude of incompatible systems
from a multitude of vendors. Free software such as
GNU/Linux could blaze this trail since it is open for
development and modification in all its aspects and
could prevent important mechanisms from being
patented. Few vendors are quick to adopt new technol-
ogy, but one might hope that a properly designed fault
preventive system would be more than they could
resist. A POSIX standard which laid the groundwork
for computer immunology is something to aim for.
Future papers on this subject must lay down the oper-
ating system requirements for this to happen.

Am I trying to send the message that system
administration is a pointless career, an inferior pur-
suit? No, of course not. An immune system cannot no
more replace the system administrator than a lympho-
cyte can replace a surgeon, but an immune system
makes the surgeon’s existence bearable, fighting the
stuff that is not easy to see and requiring basically no
intelligence. Many of the ideas in this paper have an
artificial intelligence flavor to them, but the main
point is that immune systems in nature are far from
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intelligent. The less intelligent our autonomic systems
are the cheaper they will be. Nature shows us that
responsive system’s don’t need much intelligence as
long as their mechanisms are ingenious! Simplicity
and frequency are the keywords. I hope that the next
few years will see important advances in the develop-
ment of cooperative systems with the task of preserv-
ing the general health and reliability of the network.

I am grateful to Ketil Danielsen for a discussion
about market economies in computing.

Note Added

After completing this paper, I was made aware of
reference [67] where the authors conduct a time-series
analysis of Unix systems very similar to those which I
have advocated here. This paper deserves much more
attention than I have been able to give it before the
submission deadline.
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